APPENDIX – (i)33(R) UNIVERSITY OF MADRAS

M.Sc. DEGREE COURSE IN MATHEMATICS CHOICE BASED CREDIT SYSTEM REGULATIONS

(w.e.f.2022-23)

Programme Outcomes at Postgraduate

Level Postgraduates will be able to:

- **PO1**: Demonstrate intense knowledge in their discipline.
- **PO2**: Exhibit specialized skills to plan, analyze and draw conclusions related to their respective field of study in theory and in practice.
- **PO3**: Develop expertise in their field of study through projects and research activities.
- **PO4 :** Prepare themselves to incorporate new technologies in their own discipline and demonstrate excellence in their area of specialization.
- **PO5 :** Develop social and ethical responsibility in the transfer and management of knowledge.

Programme Outcomes at Research Level

Research scholars will be able to:

- **PO1 :** Develop and demonstrate deep knowledge in the field of study to become globally competent.
- **PO2 :** Manage information, undertake investigations, conduct field study, do accurate document, network with experts and mobilize resources and skills.
- **PO3 :** Develop and exhibit scientific temper and adopt professional code of conduct in pursuit of research activities.

Programme Specific Outcome

Mathematics Majors should:

- **PO1 :** Apply the knowledge of mathematical concepts in interdisciplinary fields. Understand the nature of abstract mathematics and explore the concepts in further details.
- **PO2**: Identify challenging problems in mathematics and find appropriate solutions.
- **PO3 :** Pursue research in challenging areas of pure/applied mathematics. Employ confidently the knowledge of mathematical software and tools for treating the complex mathematical problems and scientific investigations.
- **PO4 :** Comprehend and write effective reports and design documentation related to mathematical research and literature, make effective presentations. Qualify national level tests like NET/GATE etc.

PO5 : Effectively communicate and explore ideas of mathematics for propagation of knowledge and popularization of mathematics in society.

Scheme of Examinations:

Semester - I

On the Company of A Title of the company	Duration		Mai		
Course Components / Title of the course	(Hours)	Credits	CIA	UE	Total
Core Paper – I - Algebra – I	6	4	25	75	100
Core Paper – II - Real Analysis – I	6	4	25	75	100
Core Paper – III - Ordinary Differential Equations	6	4	25	75	100
Core Paper – IV -Graph Theory	6	4	25	75	100
Elective Paper – I - (Choose One from Group – A)	4	3	25	75	100
Soft Skill Paper – I	3	2	40	60	100

Group – A (Elective Paper- I)

- 1. Formal Languages and Automata Theory
- 2. Discrete Mathematics
- 3. Fuzzy Sets and Applications

Semester - II

	Duration	Credits	Mai	rks	Total
Course Components / Title of the course	(Hours)		CIA	UE	
Core Paper – V - Algebra – II	6	4	25	75	100
Core Paper – VI - Real Analysis – II	6	4	25	75	100
Core Paper – VII - Partial Differential Equations	6	4	25	75	100
Core Paper – VIII – Probability	6	4	25	75	100
Elective Paper – II - (Choose ONE from Group – B)	4	3	25	75	100
Extra Disciplinary – I - (Choose any ONE)	4	3	25	75	100
Soft Skill Paper – II	3	2	40	60	100
Internship*	3	2			

Group - B (Elective Paper-II)

- 1. Mathematical Programming
- 2. Wavelets
- 3. Combinatorics

- 1. Mathematical Economics
- 2. Programming in C⁺⁺
- 3. Financial Mathematics

^{*} Internship will be carried out during the summer vacation of the first year and should be sent to the University by the College and the same will be included Third Semester Marks Statement.

Semester - III

	Duration	Credits	Mar	ks	Total
Course Components / Title of the course	(Hours)		CIA	UE	
Core Paper – IX-Complex Analysis – I	6	4	25	75	100
Core Paper – X-Topology	6	4	25	75	100
Core Paper – XI-Operations Research	6	4	25	75	100
Core Paper – XII-Mechanics	6	4	25	75	100
Elective Paper – III-(Choose ONE from Group – C)	4	3	25	75	100
Extra Disciplinary- II-(Choose any ONE)	4	3	25	75	100
Soft Skill Paper - III	3	2	40	60	100

Group- C (Elective Paper- III) Extra Disciplinary II

1. Algebraic Theory of Numbers

1. Java Programming

2. Number Theory and Cryptography

2.Data Structures and Algorithms

3. Stochastic Processes

Semester - IV

	Duration	Credits	Mar	ks	Total
Course Components / Title of the course	(Hours)		CIA	UE	
Core Paper – XIII- Complex Analysis - II	6	4	25	75	100
Core Paper – XIV- Differential Geometry	6	4	25	75	100
Core Paper – XV- Functional Analysis	6	4	25	75	100
Elective paper – IV-(Choose ONE from Group – D)	4	3	25	75	100
Elective Paper – V(Choose ONE from Group – E)	4	3	25	75	100
Soft Skill Paper – IV	3	2	40	60	100

Group - D (Elective Paper- IV)Group- E (Elective Paper- V)

- 1. Fluid Dynamics
- 2. Mathematical Statistics
- 3. Algebraic Topology Integral Equations.

- 1. Tensor Analysis and Relativity
- 2. Mathematical Physics
- 3. Calculus of Variations and

Question Paper Pattern from the academic year 2022-2023

Time **THREE** Hours Max marks **75**

Part A

Answer **ALL** questions $(20 \times 1 = 20 \text{ marks})$

- Only objective type allowed
- Definitions should not be asked.

Part B

Answer any **FIVE** questions out of **SEVEN** $(5 \times 5 = 25 \text{ marks})$

Part C

Answer any **THREE** questions out of **FIVE** ($3 \times 10 = 30$ marks) **S.SENATE. SEPT'2022**

APPENDIX – 33(S) M.Sc. DEGREE COURSE IN MATHEMATICS CHOICE BASED CREDIT SYSTEM

REVISED SYLLABUS (With effect from 2022-2023)

SEMESTER-I

Title of the	Course		Core Paper : I ALGEBRA-I					
Paper Nu	mber	I						
Category	Core	Year	I	Credits	4	Course		
		Semester	I			Code		
Pre-requisit	te	Basics in groups and linear transformatin						

Objective : To give the students a thorough knowledge of the various aspects of Linear Algebra. To study Linear Transformations, Jordan form, Trace and Transpose.

- **UNIT I** Another Counting Principle: Cauchy's theorem- Sylow Theorems *Chapter 2: Sections 2.11 and 2.12*
- UNIT II Direct products Finite abelian groups- Modules

 Chapter 2: Sections 2.13 and 2.14

 Chapter 4: Section 4.5
- **UNIT III** Linear Transformations Canonical forms Triangular form Nilpotent transformations. *Chapter 6: Sections 6.4* , *6.5*
- **UNIT IV** Jordan form rational canonical form. *Chapter 6 : Sections 6.6 and 6.7*
- **UNIT V** Trace and transpose Hermitian, unitary, normal transformations, real quadratic form. *Chapter 6: Sections 6.8, 6.10 and 6.11 (Omit 6.9)*

Recommended Text:

I.N. Herstein. Topics in Algebra (II Edition) Wiley, 2006.

Books for Reference:

- 1. M.Artin, *Algebra*, Prentice Hall of India, 1991.
- 2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, *Basic Abstract Algebra*, (II Edition) Cambridge University Press, 1997. (Indian Edition)
- 3. J.B. Fraleigh, A first course in Abstract Algebra, 5th edition.
- 4. K.Thirusangu and K.Balasangu, Elements of University Algebra, KTM Publications, 2021
- 5. D.S.Dummit and R.M.Foote, Abstract Algebra, 2nd edition, Wiley, 2002.
- 6. N.Jacobson, *Basic Algebra*, Vol. I & II W.H.Freeman (1980); also published by Hindustan Publishing Company, New Delhi.

Course Learning Outcomes

CO Number	CO Statement	Knowledge Level
CO1	understand linear transformations and represent in matrix form.	K2
CO2	compute minimal polynomial and characteristic polynomial of linear transformation.	К3
CO3	find applicability of the inner product spaces.	K5
CO4	outline and formulate the theory of the course to solve variety of problems at an appropriate level of difficulty.	K4, K6
CO5	examine bi-linear and Jordan canonical forms.	K1

Title of th	e Course	Core Paper –II REAL ANALYSIS					
Paper N	lumber	II					
Category	Core	Year	I	Credits	4	Course	
		Semester	I	-		Code	
Pre-requisi	te	An introductory real analysis course					

Objective: To study the real number system, Functions of Bounded Variation and Rectifiable, Riemann-Stieltjes integral, Lebesgue Integral and Square Space.

UNIT-I: Functions of bounded variation - Introduction - Properties of monotonic functions - Functions of bounded variation - Total variation - Additive property of total variation - Total variation on [a, x] as a function of x - Functions of bounded variation expressed as the difference of two increasing functions - Continuous functions of bounded variation.

Chapter – 6: Sections 6.1 to 6.8

Infinite Series: Absolute and conditional convergence - Dirichlet's test and Abel's test - Rearrangement of series - Riemann's theorem on conditionally convergent series.

Chapter 8: Sections 8.8, 8.15, 8.17, 8.18

UNIT-II: The Riemann - Stieltjes Integral - Introduction - Notation - The definition of the Riemann - Stieltjes integral - Linear Properties - Integration by parts- Change of variable in a Riemann - Stieltjes integral - Reduction to a Riemann Integral - Euler's summation formula - Monotonically increasing integrators, Upper and lower integrals - Additive and linearity properties of upper and lower integrals - Riemann's condition - Comparison theorems.

Chapter - 7 : Sections 7.1 to 7.14

UNIT-III: The Riemann-Stieltjes Integral - Integrators of bounded variation-Sufficient conditions for the existence of Riemann-Stieltjes integrals-Necessary conditions for the existence of Riemann-Stieltjes integrals- Mean value theorems for Riemann - Stieltjes integrals - The integrals as a function of the interval - Second fundamental theorem of integral calculus-Change of variable in a Riemann integral-Second Mean Value Theorem for Riemann integral-Riemann-Stieltjes integrals depending on a parameter-Differentiation under the integral sign-Lebesgue criteriaon for the existence of Riemann integrals.

Chapter - 7: 7.15 to 7.26

UNIT-IV: Infinite Series and infinite Products - Double sequences - Double series - Rearrangement theorem for double series - A sufficient condition for equality of iterated series - Multiplication of series - Cesaro summability - Infinite products.

Chapter - 8 Sec, 8.20, 8.21 to 8.26

Power series - Multiplication of power series - The Taylor's series generated by a function - Bernstein's theorem - Abel's limit theorem - Tauber's theorem

Chapter 9: Sections 9.14 9.15, 9.19, 9.20, 9.22, 9.23

UNIT-V: Sequences of Functions - Pointwise convergence of sequences of functions - Examples of sequences of real - valued functions - Definition of uniform convergence - Uniform convergence and continuity - The Cauchy condition for uniform convergence - Uniform convergence of infinite series of functions - Uniform convergence and Riemann - Stieltjes integration - Non-uniform Convergence and Term-by-term Integration - Uniform convergence and differentiation - Sufficient condition for uniform convergence of a series - Mean convergence.

Chapter -9 Sec 9.1 to 9.6, 9.8,9.9, 9.10,9.11, 9.13

Recommended Text:

Tom M.Apostol: *Mathematical Analysis*, 2nd Edition, Narosa,1989.

Books for Reference:

- 1. Bartle, R.G. Real Analysis, John Wiley and Sons Inc., 1976.
- 2. Rudin, W. *Principles of Mathematical Analysis*, 3rd Edition. McGraw Hill Company, New York, 1976.
- 3. Malik, S.C. and Savita Arora. *Mathematical Anslysis*, Wiley Eastern Limited. New Delhi, 1991.
- 4. Sanjay Arora and Bansi Lal, *Introduction to Real Analysis*, Satya Prakashan, New Delhi, 1991.
- 5. Gelbaum, B.R. and J. Olmsted, *Counter Examples in Analysis*, Holden day, San Francisco, 1964.
- 6. A.L.Gupta and N.R.Gupta, *Principles of Real Analysis*, Pearson Education, (Indian print) 2003.

Course Learning Outcomes

CO Number	CO Statement	Knowledge Level
CO1	analyze and evaluate functions of bounded variation and Rectifiable Curves.	K4, K5
CO2	describe the concept of Riemann-Stieltjes integral and its properties.	K1
CO3	demonstrate the concept of step function, upper function, Lebesgue function and their integrals.	K2
CO4	construct various mathematical proofs using the properties of Lebesgue integrals and establish the Levi monotone convergence theorem.	K3
CO5	Formulate the concept and properties of inner products, norms and measurable functions.	К6

Title of the	the Course Core Paper: III ORDINARY DIFFERENTIAL EQUATION						NS
Paper Nu	ımber			III			
Category	Core	Year	I	Credits	4	Course	
		Semester	I			Code	
Pre-requisi	te	Basics in differential equations					

Objective: To study the Differential equation of higher order, to find the power series solution of special type of Differential equations, to solve the system of linear Differential equations, to study existence and uniqueness of the solutions, boundary value problems.

UNIT-I: Linear equations with constant coefficients Second order homogeneous equations-Initial value problems-Linear dependence and independence-Wronskian and a formula for Wronskian-Non-homogeneous equation of order two.

Chapter 2: Sections 1 to 6

UNIT-II: Linear equations with constant coefficients Homogeneous and non-homogeneous equation of order n –Initial value problems- Annihilator method to solve non-homogeneous equation.

Chapter 2: Sections 7 to 11.

UNIT-III: Linear equation with variable coefficients Initial value problems -Existence and uniqueness theorems – Solutions to solve a non-homogeneous equation – Wronskian and linear dependence – Reduction of the order of a homogeneous equation – Homogeneous equation with analytic coefficients-The Legendre equation.

Chapter: 3 Sections 1 to 8 (omit section 9)

UNIT-IV: Linear equation with regular singular points Second order equations with regular singular points –Exceptional cases – Bessel equation.

Chapter 4: Sections 3, 4 and 6 to 8 (omit sections 5 and 9)

UNIT-V: Existence and uniqueness of solutions to first order equations: Equation with variable separated – Exact equation – Method of successive approximations – the Lipschitz condition – Convergence of the successive approximations and the existence theorem.

Chapter 5: Sections 1 to 6 (omit Sections 7 to 9)

Recommended Text

E.A.Coddington, *An introduction to ordinary differential equations* (3rd Printing) Prentice-Hall of India Ltd., New Delhi, 1987.

Reference Books

- 1. Williams E. Boyce and Richard C. Di Prima, *Elementary differential equations and boundary value problems*, John Wiley and sons, New York, 1967.
- 2. George F Simmons, *Differential equations with applications and historical notes*, Tata McGraw Hill. New Delhi. 1974.
- 3. N.N. Lebedev, *Special functions and their applications*, Prentice Hall of India, New Delhi, 1965.

- 4. W.T.Reid. Ordinary Differential Equations, John Wiley and Sons, New York, 1971
- 5. M.D.Raisinghania, *Advanced Differential Equations*, S.Chand & Company Ltd. New Delhi 2001
- 6. B.Rai, D.P.Choudhury and H.I. Freedman, *A Course in Ordinary Differential Equations*, Narosa Publishing House, New Delhi, 2002.

Course Learning Outcomes

CO Number	CO Statement	Knowledge Level
CO1	establish the qualitative behavior of solutions of systems of differential equations .	К3
CO2	recognize the physical phenomena modeled by differential equations and dynamical systems.	K1
CO3	analyze solutions using appropriate methods and give examples.	K2, K4
CO4	formulate Green's function for boundary value problems.	К6
CO5	understand and use various theoretical ideas and results that underlie the mathematics in this course.	K5

Title of the Course			Core Paper : IV GRAPH THEORY					
Paper Nu	mber	IV						
Category	Core	Year	I	Credits	4	Course		
		Semester	I			Code		
Pre-requisi	te	Basics in graph theory						

Objective: To understand the concept of graphs, sub graphs, trees, connectivity, Euler tour, Hamilton cycle, matching, colouring of graphs, independent set, cliques, vertex colouring and planar graphs.

Unit-I

Graphs – Varieties of graphs – Walks and connectedness – degrees – the problem of Ramsey – External graphs

Chapter 2

Unit-II

Blocks – Cut points – Bridges and blocks – Block Graphs and Cut point graphs

Trees – Characterization of trees – Centers and Centroids – Block Cut points – Independent Cycles and Cocycles

Chapters: 3 and 4 (Omit: 3.5 Matroids)

Unit-III

Connectivity – Connectivity and line – Connectivity – Menger's Theorem – Point form – Further Variations of Mengers theorem

Chapter 5

Unit-IV

Coverings – Coverings and independent sets – Planarity – Plane and planar graphs – Outerplanar graph – Thickness – Crossing number

Chapters: 10 and 11

Unit-V

Colorability – The Chromatic number – The five color theorem – The chromatic polynomial.

Matrices – The adjacency matrix – the incidence matrix – the cycle matrix

Chapters: 12 and 13

Recommended Text:

Frank Harary, Graph Theory, Narosa Publishing House, New Delhi, 2001

Books for Reference:

- 1. J.A. Bondy and U.S.R Murty , Graph Theory with Applications , Macmillan, London 1976
- 2. K.R. Parthasarathy, Basic Graph Theory, Tata McGraw-Hill, New Delhi, 1994

- 3. Narsingh Deo , Graph Theory with Applications to Engineering and Computer Science , Prentice-Hall of India, 2007
- 4. Douglas B.West, Introduction to Graph Theory, Pearson Prentice Hall, 2006

Learning Outcomes

CO Number	CO Statement	Knowledge Level
CO1	understand basic concepts in Graph theory.	K2
CO2	apply the understanding and use it to model real life situations.	К3
CO3	apply the concepts of connectivity, Euler and Hamilton cycles in the real life situations.	K4
CO4	identify and develop the applications of planarity and colourability .	K1, K6
CO5	create graph models in network and computing.	K5

GROUP A: ELECTIVE-I

Title of the	Course	A1 . FORMAL LANGUAGES AND AUTOMATA THEORY								
Paper Nui	mber									
Category E	Elective-I	Year	I	Credits	4	Course				
		Semester	I			Code				
Pre-requisite		Elementary	algebra							
Course Outlin	ie	UNIT-I:								
			nata, regulai							
			inite state systems – Basic definitions – Nondeterministic finite automata Finite automata with ε moves – Regular expressions – Regular grammars.							
					ular express	ions – Regula	r grammars.			
		Chapter 2. Chapter 9 S	Sections 2.1	to2.5						
		UNIT-II:	9.1							
			of regular se	ts.						
					- Closure pro	operties of reg	ular sets –			
						-Nerode Theor				
		minimizatio	n of finite au	tomata.						
		Chapter 3 :	Sections 3.1	to 3.4						
		-								
		UNIT-III : (Context-fre	e grammar	s					
					•	nars – Derivat				
		-		-free gramma	ars – Choms	ky normal for	m –			
		Greibach no	rmal form.							
		Chapter 4:	Section 4.1 to	o 4.6						
		UNIT-IV : F	Pushdown a	automata						
		Informal des	scription- De	finitions-Pusl	hdown autor	mata and conte	ext-free			
					nistic pusho	lown automat.				
			Sections 5.1							
			Properties of				Daninian			
		algorithms f		CFL S – CIOS	sure properu	ies for CFL's -	- Decision			
		argoriums	or Cr L s.							
		Chapter 6 :	Sections 6.1	to 6.3						
Recommended	d Text	John E.Ho	pcraft and Jef	frey D.Ullma	an, <i>Introduc</i>	tion to Automo	ata Theory,			
		Languag 1987.	es and Comp	utation, Naro	sa Publishir	ng House, Nev	v Delhi,			
Reference	Books		aa, <i>Formal L</i>	anguages, A	cademic Pre	ess, New York	, 1973.			
		2. John C. M	Iartin, <i>Introd</i>	luction to La	nguages and	d theory of Con , New Delhi,	mputations			

Title of t	he Course	A2: DISCRETE MATHEMATICS						
Paper	Number							
Category	Elective-II	Year	I	Credits	4	Course		
		Semester	I			Code		
Pre-requisi	te	Elementary	algebra	•	•	<u>.</u>		
Course Ou	tline		-			definitions - Mo		
						erties – Boolean p	olynomials,	
			nal forms of B					
			§ 1 A and B §					
				Lattices: S	witching C	ircuits: Basic Def	initions -	
		Applications						
		Chapter 2: § 1 A and B						
		UNIT-III: Finite Fields						
		Chapter 3:	§ 2					
			-	Irreducible F	Polynomial	s over Finite field	ls –	
			of Polynomia		•			
		Chapter 3: § 3 and §4.						
		UNIT-V: Coding Theory: Linear Codes and Cyclic Codes						
		Chapter 4 § 1 and 2						
Recommen	ded Text	Rudolf Lidl	and Gunter Pi	ilz, Applied A	Abstract Al	gebra, Spinger-V	erlag, New	
		York, 198	34.					
Referen	ce Books	1. A.Gill, Applied Algebra for Computer Science, Prentice Hall Inc., New						
		Jersey.		. 10.	<i>c c</i>	. a .	ard E. 1	
		2. J.L.Gersting, <i>Mathematical Structures for Computer Science</i> (3 rd Edn.), Computer Science Press, New York.						
		3. S.Wiitala, Discrete Mathematics- A Unified Approach,						
			Hill Book Co		- 2,			

Title of t	he Course	A3. FUZZY SETS AND APPLICATIONS						
Paper	Number							
Category	Elective-II	Year	I	Credits	4	Course		
		Semester	I			Code		
Pre-requisit	e	Knowledge	of graphs	, relations, comp	osition	·		
Course Out	line	UNIT-I: Fu	ındamenta	l Notions: Chap	ter I: Sec.	1 to 8		
		UNIT-II: Fuzzy Graphs: Chapter II: Sec. 10 to 18						
		UNIT-III: Fuzzy Relations: Chapter II: Sec. 19 to 29						
		UNIT-IV: Fuzzy Logic: Chapter III: Sec.31 to 40 (omit Sec. 37, 38, 41)						
		UNIT-V: The Laws of Fuzzy Composition: Chapter IV: Sec.43 to 49						
Recommend	led Text	A.Kaufman, Introduction to the theory of Fuzzy subsets, Vol.I,						
		Academic Pr	ess, New	York, 1975.				
Referen	ce Books	1. H.J.Zimmermann, Fuzzy Set Theory and its Applications, Allied Publishers,						
		Chennai, 1996						
		2. George J.Klir and Bo Yuan, Fuzzy sets and Fuzzy Logic-Theory and						
		Application	ons, Prenti	ce Hall India, Ne	ew Delhi, 2	001.		

SEMESTER-II

Title of the	Course		Core Paper : V ALGEBRA-II					
Paper Nu	mber	ber V						
Category	Core	Year	I	Credits	4	Course		
		Semester	II			Code		
Pre-requisite		Basic notions	of fields		•	<u> </u>		

Objective: To study the transformations, Extension Fields and algebraic extensions, Finite Fields and Sylow's theorems, Finite Simple groups, Summetry groups and Cayley digraphs of groups and Galois Theory in Vector Space..

- **UNIT I** Extension fields Transcendence of e. *Chapter 5: Section 5.1 and 5.2*
- **UNIT II** Roots or Polynomials.- More about roots *Chapter 5: Sections 5.3 and 5.5*
- **UNIT III** Elements of Galois theory. *Chapter 5 : Section 5.6*
- **UNIT IV** Finite fields Wedderburn's theorem on finite division rings *Chapter 7: Sections 7.1 and 7.2 (Theorem 7.2.1 only)*
- **UNIT V** Solvability by radicals Galois groups over the rationals A theorem of Frobenius.

Chapter 5: Sections 5.7 and 5.8 Chapter 7: Sections 7.3

Recommended Text:

I.N. Herstein. Topics in Algebra (II Edition) Wiley 2002

Reference Books:

- 1. M.Artin, *Algebra*, Prentice Hall of India, 1991.
- 2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, *Basic Abstract Algebra* (II Edition) Cambridge University Press, 1997. (Indian Edition)
- 3. I.S.Luther and I.B.S.Passi, *Algebra*, Vol. I Groups(1996); Vol. II Rings, (1999) Narosa Publishing House, New Delhi.
- 4. K.Thirusangu and K.Balasangu, An Invitation to Field Theory, KTM Publications, 2021.
- 5. D.S.Dummit and R.M.Foote, *Abstract Algebra*, 2nd edition, Wiley, 2002.
- 6. N.Jacobson, *Basic Algebra*, Vol. I & II Hindustan Publishing Company, New Delhi.

Learning Outcomes

CO Number	CO Statement	Knowledge Level
CO1	prove theorems applying algebraic ways of thinking.	K3, K5
CO2	connect groups with graphs and understanding about Hamiltonian graphs.	K4
CO3	compose clear and accurate proofs using the concepts of Galois Theory.	К6
CO4	bringout insight into Abstract Algebra with focus on axiomatic theories.	K1
CO5	Demonstrate knowledge and understanding of fundamental concepts including extension fields, Algebraic extensions, Finite fields, Class equations and Sylow's theorem.	К2

Title of the Course			Core Paper : VI REAL ANALYSIS – II					
Paper N	lumber		VI					
Category	Core	Year	I	Credits	4	Course		
		Semester	II	-		Code		
Pre-requisite		Real Analys	sis-I					

Objective: To study and analyze the real number system, Lebesgue Integral, Fourier series, Fourier Integral, multivariable calculus, Implicit functions and Extremum problems.

UNIT - I

The Lebesgue Integral - Introduction - The integral of a step function - Monotonic sequences of step functions - Upper functions and their integrals - Riemann- integrable functions as examples of upper functions - The class of Lebesgue - integrable functions on a general interval - Basic properties of the Lebesgue integral - Lebesgue integration and sets of measure zero - The Levi monotone convergence theorems - The Lebesgue dominated convergence theorem.

Chapter: 10 Sections: 10.1 - 10.10

UNIT - II

The Lebesgue Integral - Measurable functions - Continuity of functions defined by Lebesgue integrals - Differentiation under the integral sign - Interchanging the order of integration - Measurable sets on the Real line - The Lebesgue integral over arbitrary subsets of R - Lebesgue integrals of complex – valued functions - Inner products and norms - The set $L^2(I)$ of square – integrable functions - The set $L^2(I)$ as a semi metric space - A convergence theorem for series of functions in $L^2(I)$ - The Riesz – Fischer theorem.

Chapter: 10 Sections: 10.14 - 10.25

UNIT-III: Fourier Series and Fourier Integrals - Introduction - Orthogonal system of functions - The theorem on best approximation - The Fourier series of a function relative to an orthonormal system - Properties of Fourier Coefficients - The Riesz-Fischer Thorem - The convergence and representation problems in for trigonometric series - The Riemann - Lebesgue Lemma - The Dirichlet Integrals - An integral representation for the partial sums of Fourier series - Riemann's localization theorem - Sufficient conditions for convergence of a Fourier series at a particular point - Cesaro summability of Fourier series- Consequences of Fejes's theorem - The Weierstrass approximation theorem

Chapter 11 : Sections 11.1 - 11.15

UNIT-IV: Multivariable Differential Calculus - Introduction - The Directional derivative - Directional derivative and continuity - The total derivative - The total derivative expressed in terms of partial derivatives - The matrix of linear function - The Jacobian matrix - The chain rule - Matrix form of chain rule - The mean - value theorem for differentiable functions - A sufficient condition for differentiability - A sufficient condition for equality of mixed partial derivatives - Taylor's theorem for functions of R^n to R^1

Chapter 12 : Section 12.1 - 12.14

UNIT-V: Implicit Functions and Extremum Problems: Functions with non-zero Jacobian determinants — The inverse function theorem-The Implicit function theorem-Extrema of real valued functions of severable variables-Extremum problems with side conditions.

Recommended Text:

Tom M.Apostol: Mathematical Analysis, 2nd Edition, Narosa, 1989

Books for Reference:

- 1.Burkill, J.C. *The Lebesgue Integral*, Cambridge University Press, 1951.
- 2. Munroe, M.E. Measure and Integration. Addison-Wesley, Mass. 1971.
- 3.Royden, H.L. Real Analysis, Macmillan Pub. Company, New York, 1988.
- 4. Rudin, W. Principles of Mathematical Analysis, McGraw Hill Company, New York, 1979.
- 5.Malik,S.C. and Savita Arora. *Mathematical Analysis*, Wiley Eastern Limited, New Delhi, 1991.
- 6. G. de Barra, Measure Theory and Integration, New Age International, 2003

Learning Outcomes

CO Number	CO Statement	Knowledge Level
CO1	understand and describe the basic concepts of Fourier series and Fourier integrals with respect to orthogonal system.	K1, K2
CO2	analyze the representation and convergence problems of Fourier series.	K4
CO3	analyze and evaluate the difference between transforms of various functions.	K4, K5
CO4	formulate and evaluate complex contour integrals directly and by the fundamental theorem.	K5, K6
CO5	apply the Cauchy integral theorem in its various versions to compute contour integration.	К3

Title of the	Course	Core Pa	Core Paper – VII PARTIAL DIFFERENTIAL EQUATIONS				
Paper Number VII							
Category	Core	Year	I	Credits	4	Course	
		Semester	II			Code	
Pre-requisite		UG level differen	ntial equation	S			

Objective : To develop skills in solving partial differential equations.

UNIT-I: Partial Differential Equations of First Order: Formation and solution of PDE- Integral surfaces – Cauchy Problem order eqn- Orthogonal surfaces – First order non-linear – Characteristics – Csmpatible system – Charpit method. Fundamentals: Classification and canonical forms of PDE.

Chapter 0: 0.4 to 0.11 (omit .1,0.2.0.3 and 0.11.1) and Chapter 1: 1.1 to 1.5

UNIT-II: Elliptic Differential Equations: Derivation of Laplace and Poisson equation – BVP – Separation of Variables – Dirichlet's Problem and Newmann Problem for a rectangle – Interior and Exterior Dirichlets's problems for a circle – Interior Newmann problem for a circle – Solution of Laplace equation in Cylindrical and spherical coordinates – Examples.

Chapter 2: 2.1, 2 2,2.5 to 2.13 (omit 2.3 and 2.4)

UNIT-III: Parabolic Differential Equations: Formation and solution of Diffusion equation – Dirac-Delta function – Separation of variables method – Solution of Diffusion Equation in Cylindrical and spherical coordinates Examples.

Chapter 3: 3.1 to 3.7 (omit 3.8 & 3.9)

UNIT-IV: Hyperbolic Differential equations: Formation and solution of one-dimensional wave equation – canonical reduction – IVP- d'Alembert's solution – Vibrating string – Forced Vibration – IVP and BVP for two-dimensional wave equation – Periodic solution of one-dimensional wave equation in cylindrical and spherical coordinate systems – vibration of circular membrane – Uniqueness of the solution for the wave equation – Duhamel's Principle – Examples

Chapter 4: 4.1 to 4.11(omit 4.12&4.13)

UNIT-V: Green's Function: Green's function for laplace Equation – methods of Images – Eigen function Method – Green's function for the wave and Diffusion equations. Laplace Transform method: Solution of Diffusion and Wave equation by Laplace Transform.

Chapter 5: 5.1 to 5.6 Chapter 6: 6.13.1 and 6.13.2 only (omit (6.14)

Recommended Text:

S, Sankar Rao, *Introduction to Partial Differential Equations*, 2^{nd} Edition, Prentice Hall of India, New Delhi. 2005

Books for Reference:

- 1. R.C.McOwen, *Partial Differential Equations*, 2nd Edn. Pearson Eduction, New Delhi, 2005.
- 2. I.N.Sneddon, Elements of Partial Differential Equations, McGraw Hill, New Delhi, 1983.
- 3. R. Dennemeyer, *Introduction to Partial Differential Equations and Boundary Value Problems*, McGraw Hill, New York, 1968.
- 4. M.D.Raisinghania, *Advanced Differential Equations*, S.Chand & Company Ltd., New Delhi, 2001.

Learning Outcomes

CO Number	CO Statement	Knowledge Level
CO1	recognize the major classification of PDEs and the qualitative differences between the classes of equations.	K1
CO2	demonstrate modeling assumptions and derivations that lead to PDEs.	К2
CO3	be critically competent in solving linear PDEs using classical solution methods.	К4
CO4	use knowledge of partial differential equations for modeling the general structure of solutions and using analytic methods for solutions.	К6
CO5	investigate and solve boundary values problems and point out its significance.	K3, K5

Title of the	Course	e Core Paper – VIII Probability Theory				y Theory	
Paper Nu	ımber	VIII					
Category	Core	Year	I	Credits	4	Course	
		Semester	II			Code	
Pre-requisite		Probability at	UG level	•	•	•	

Objective: To study the fundamental concepts of measure theory, probability measures, Law of large numbers, Central Limit Theorems and its ramifications.

Unit-I

Fundamental concepts – Measure Theory-Classes of sets –Probability measures and their Distribution Functions

Chapter 2: Sections 2.1,2.2

Unit-II

Random variables – Expectation – Properties of Mathematical Expectations-Independence-Simple problems

Chapter-3 : Sections 3.1,3.2,3.3

Unit-III

Convergence concepts – Various modes of convergence – Borel-Cantelli Lemma-Vague convergence

Chapter-4 : Sections 4.1,4.2,4.3

Unit-IV

Law of large numbers-Random series – Impel theorems-Weak law of large numbers-Convergence series –Strong

Law of large numbers –Simple problems

Characteristic Functions : General properties-Convolutions & Uniqueness – Convergence theorems-Simple applications

Chapter -5: Sections 5.1 - 5.4, Omit 5.5

Chapter-6: Sections 6.1-6.4

Unit-V

Central Limit Theorems and its Ramifications

Liapounov's theorem – Lindeberg Feller Theorem-Ramification of Feller Limit theorems

Conditioning – Markovian property – Martingale – Basic properties of conditional expectations-Conditional

Independence – Markov property-Basic properties of Smartingales.

Chapter-7: Sections 7.1 - 7.3Chapter-9: Sections 9.1-9.3

Recommended Text:

Kai Lai Chung, A Course in Probability Theory, Third edition – Academic Press, New York, 1974

Books for Reference:

- 1. R.B.Ash, Real Analysis and Probability, Academic Press, New York, 1972
- 2. R.Durrett , Probability : Theory and Examples, [2nd Edition] , Duxpury Press , New York, 1996
- 3. V.K.Rohatgi, An Introduction to Probability: Theory and Mathematical Statistics, Weiley Eastern Ltd., New Delhi, 1988[3rd Print].
- 4. S.I.Resnick, A Probability Path, Birhauser, Berlin, 1999.
- 5. B.R.Bhat , Modern Probability Theory ,[3rd Edition] , New Age International (P) Ltd, New Delhi , 1999.
- 6. M.Fisz, Probability Theory and Mathematical Statistics, John Wiley and Sons, New York, 1963.

Learning Outcomes

CO Number	CO Statement	Knowledge Level
CO1	analyze and describe various modes of convergence concepts.	K4, K5
CO2	classify the concept of law of large numbers and weak law of large numbers.	K1
CO3	Illustrate the simple problems.	K2
CO4	construct various mathematical proofs using the properties of mathematical expectations.	К3
CO5	explain the concept of markovian property and martingale.	K6

Group -B (Elective Paper-II)

Title of the	course	MATHEMATICAL PROGRAMMING					
Paper Nur							
Category		Year	I	Credits	3	Course	
		Semester	Ш			Code	
Pre-requis	ite	Basic mathematical programm	nina	techniques		0000	
Course ou		UNIT – I : Integer Linear Pr			es o	f Integer Line	ar
		Programming Problems – Co Integer Cutting Plane Metho Plane Method- Branch and B Chapter 7	ncer od – ounc	ot of Cutting P Gomory's Mi d Method	Plane xed	– Gomory's Integer Cutti	All ng
		UNIT – II : Dynamic Program Programming Problem - D Dynamic Programming unde LPP Chapter 22	evel	oping Optima	al D	ecision Police	су-
		UNIT – III: Classical Opt Optimization – Constrained Equality Constraints – Constr inequality Constraints Non-linear Programming General NLPP – Graphical Wolfe's modified simplex met Chapter 23 and Chapter 24: method)	d M raine Met Solu hod	ulti- variable ed Multi-variab hods : Exal tion – Quadra	Op ole O mple atic	timization w ptimization w s of NLPP Programming	rith rith –
		UNIT – IV : Linear Programs Parametric Linear Program Variations in the Right hand s Chapter 4 : Section 4.1 to 4.3	min side,	g : Variation i b _i			Cj,
		UNIT – V: Goal Programmi approach – Concept of Goal Model formulation – Gramming. Programming. Chapter 8: Section 8.1 to 8.5	i ng : Il Pro aphic	: Difference b ogramming – cal solution	Goa met	al Programmi thod of Go	ng bal
Recomme Text		J.K.Sharma, Operations Res Delhi, 2009		-	-		eW
Reference	Books	 Hamdy A. Taha, Opera Prentice – Hall of India F.S. Hiller & J.Liek Research (7th edition) Delhi, 2001. Beightler. C, D.phi Optomization (2nd edition) 1979 S.S. Rao – Optimiza Eastern, New Delhi. 19 	Privoerm Tata Ilips, ion)	vate Limited, Nan Introduct a – McGraw I , B. Wilde Prentice Hall	New ion Hill C , F Pvt	Delhi, 1997 to Operatio Company , Ne oundations Ltd., New Yo	of rk,

Group -B (Elective Paper-II)

Title of the	course	WAVELETS						
Paper Nun	nber							
Category	Elective	Year		I	Credits	3	Course	
		Seme	ster	II			Code	
Pre-requis	ite	Basic	Analysis and	Linea	r Algebra			
Course Ou	ıtline	UNIT	– I : The Disc	rete F	ourier Transf	orms		
		Chapt	er 2 : Section	s 2.1	to 2.3			
		UNIT	- II : Wavelet	s on Z	ː_n			
		Chapt	er 3 : Section	s 3.1	and 3.2			
		UNIT – III: Wavelets on Z						
		Chapter 4 : Sections 4.1 to 4.3						
		UNIT – IV : Wavelets on z (Continued)						
		Chapter 4 : Sections 4.4 to 4.6						
		UNIT - V : Wavelets on R						
		Chapt	er 5 : Section	ctions 5.1 to 5.5				
Recomme	nded	Michael W Fraier, An Introduction to Wavelets through Linear						
Text		Algeb	ra, Springer v	erlag,	Berlin, 1999			
Reference	Books	C.K. Chui, An Introduction to Wavelets, Academic Press,						
			1992					
2. E. Hernande and G.Weiss, A First Course in Wavelets					se in Wavelets,			
		CRC Press, NY 1996						
		3. D.F. Walnut, Introduction to Wavelet Analysis, Birkhauser,						
			2004					

Group –B (Elective Paper-II)

Title of the	course	COM	BINATORICS					
Paper Nur	nber							
Category	Elective	Year		I	Credits	3	Course	
		Seme	ster	II			Code	
Pre-requis	ite							
Course Ou	utline	UNIT	– I : Basic Co	mbina	torial numbers			
		Chapt	er 1 : Section	1				
		UNIT	- II : Generato	r Fun	ctions and Recu	ırrence	e Relations –	
		Symn	netric function	S				
		Chapt	er 1 : Section	s 2 an	d 3			
		UNIT – III : Multinomials – Inclusion and Exclusion Principle						
		Chapter 1 : Sections 4 and 5						
		UNIT – IV : Necklace Problem and Burnside's Lemma – Cycle						
		Index of Permutation Group – Polya's Theorems and their						
		Applications						
		Chapter 2 : Sections 1, 2 and 3.						
		UNIT - V : Binary Operations on Permutation Groups						
		Chapter 2 : Section 4						
Recomme	nded	V.Krishnamoorthy, Combinatorics – Theory and Applications ,						
Text		Affilia	ted East – We	st Pre	ess Pvt Ltd, New	Delhi	, 1985	
Reference	Books	4.	Aigner, M.Co	ombina	atorial Theory, S	pringe	er Verlag, Berlin	
			1979					
		5. Liu, C.L. Introduction to Combinatorial Mathematics. MC						
		6. Grimaldi, R.P. Discrete and combinatorial Mathematics : An						
			applied intro	ductio	n (4 th Edition). I	Pearso	on, (8 th Indian Pri	int)

Title of the	course	MATHEMATICAL ECONOMICS						
Paper Nur	nber							
Category	Elective	Year	I	Credits	3	Course		
		Semester	П	-		Code		
Pre-requis	ite	U.G. Level Modern	Algeb	ora and Calculus	<u> </u>	-1		
Objectives Course	of the	To initiate the study Markets Equilibrium			or, Th	eory of Firms,		
Course Ou	utline	UNIT – I: The THE function – Indifferer Existence of Utility a Utility Index	nce Ci	urves – Rate of	Comm	nodity Substitutio	n –	
		UNIT - II : Demand and Income effects Revealed Preference Chapter 2: Sections	– Ge ce – F	neralisation to n Problem of Choi	varial ce in l	oles – Theory of Risk.	n	
		UNIT – III: The Theory of Firm: Production Function – Productivity Curves – isoquents – Optimization behavior – Input Demand Functions – Cost Functions (short – run and long –run) – Homogeneous Production functions and their properties – CES Production Function and their properties – Joint products – Generalisation to m variables						
		UNIT – IV: Market Equilibrium: Assumption of Perfect Competition – Demand Functions – Supply Functions – Commodity Equilibrium – Applications of the Analysis – factor Market Equilibrium – Existence of Existence Equilibrium – Stability of Equilibrium – Dynamic Equilibrium with lagged adjustment. UNIT - V: Imperfect Competition: Monopoly and its applications						
		 – Duopoly and Oligopoly – Monopolistic Composition – Monopsony, Duopsony and Oligopsony – Bilateral Monopoly Chapter 6 : Sections 6.1 to 6.7 						
Recomme Text	nded	J.M. Henderson and mathematical Appro						
Reference	Books	 W.J. Baumol, Ederatice Hall of A.C. Chiang, Function Economics, McG M.D. Intriligator, Theory, Prentice A. Kautsoyianning McMillan, New New New York 	India, Indam Graw Math e hall, s, Mo	New Delhi, 197 nental Methods of Hill, New York, of nematical Optimi New York, 191 dern Microecond	8 of Mat 1984 zation	hematical and Economic		

Title of the	course	PROGRAMMING IN C++						
Paper Nun	nber							
Category	Elective	Year	I Credits 3 Course					
		Semester	П			Code		
Pre-requis	ite	Basics of Computer	Prog	ramming				
Course Ou	ıtline	UNIT – I : Tokens, I	Expre	ssions and Cont	rol Str	uctures		
		Chapter 3 : Section	s 3.1	- 3.25				
		UNIT – II : Functions in C++						
		Chapter 4 : Sections 4.1 to 4.12						
		UNIT – III : Classes and Objects						
		Chapter 5 : Sections 5.1 to 5.19						
		UNIT – IV : Constructors and Destructors						
		Chapter 6 : Sections 6.1 – 6.11						
		UNIT – V: Operator overloading and Type Conversions						
		Chapter 7: Sections 7.1 to 7.9						
Recomme	nded	E. Balaguruswamy,	Obje	ct Oriented Prog	ramm	ing with C++, Tata		
Text		McGraw Hill, New Delhi, 1999						
Reference Books D.Ravichandran, Programming with C++, Tata McGraw Hill,					McGraw Hill, New			
		Delhi, 1996						

Title of the	course	Financial Mathematics							
Paper Nun	nber								
Category	Elective	Year		I	Credits	3	Course		
		Seme	ster	П			Code		
Pre-requis	ite	Stoch	astic Process	es		l			
Course Ou	ıtline	UNIT	– I : Single Pe	eriod N	/lodels: Definition	ns fror	m Finance –		
		Pricing	g of a Forward	d – Or	ne – step Binary	Mode	I		
		Chapt	er 1 : Section	s 1.1 t	to 1.3				
		UNIT	– II : Single P	eriod l	Models ; A chara	cteriz	ation of no		
		arbitra	ige – Risk – N	leutra	l Probability Mea	sure			
		Chapt	er 1 : Section	s 1.5	and 1.6				
		UNIT	– III : Binomia	al tree	s and Discrete p	arame	eter Martingales:		
		Multi բ	period Binary	Model	 American op 	tions			
		Chapt	er 2: Sections	2. 1	and 2.2				
		UNIT – IV: Binomial trees and Discrete parameter Martingales:							
		Discrete parameter martingales and Markov processes –							
		Martingale theorems							
		Chapter 2 : Sections 2.3 and 2.4							
		UNIT – V: Brownian Motion : Definition of the process – Levy's							
		construction of Brownian Motion							
		Chapter 3: Sections 3.1 and 3.2							
Recomme	nded	A.Etheridge, A course in Financial Calculus, Cambridge University							
Text		Press, 2002							
Reference	Books	1.	M. Boxter a	nd A. I	Rennie, Financia	l calc	ulus: An		
		Introduction to Derivatives Pricing, Cambridge University							
			Press, 1996						
		2.	D. Lamberto	n and	B. Lapeyre, Intro	oductio	on to Stocahstic		
			calculus App	lied to	Finance, Chapr	man a	nd hall, 1966		
		3. M. Musiela and M. Rutkowski, Martingale Methods in							
		Financial Modeling, Springer, New York, 1988							
		4. R.J. Elliott and P.Ekkehard Kopp, Mathematics of Financial							
		Markets, Springer, New York, 2001 (3 rd Printing)							

SEMESTER III

Title of the	e of the Course Core Paper – IX COMPLEX ANALYSIS-I						
Paper Nu	mber	IX					
Category	Core	Year	II	Credits	4	Course	
		Semester	Semester III Code				
Pre-requisite Basics at UG level							

Objective: To study the Cauchy's Integral formula, Analytical functions, Harmonic functions and Entire functions.

UNIT I - Cauchy's Integral Formula: The Index of a point with respect

to a closed curve - The Integral formula - Higher derivatives.

 $\textbf{Local Properties of Analytical Functions:} \ Removable \ Singularities-Taylors's$

Theorem-Zeros and poles-The local Mapping - The Maximum Principle.

Chapter 4 : Section 2 : 2.1 to 2.3, Section 3 : 3.1 to 3.4

UNIT II - The general form of Cauchy's Theorem : Chains and cycles- Simple

Connnectivity -Homology - The General statement of Cauchy's Theorem - Proof of Cauchy's theorem - Locally exact differentials-Multilply connected regions - Residue theorem - The argument principle.

Chapter 4: Section 4: 4.1 to 4.7, Section 5: 5.1 and 5.2

UNIT III - Evaluation of Definite Integrals and Harmonic Functions:

Evaluation of definite integrals - Definition of Harmonic functions and basic properties - Mean value property - Poisson formula.

Chapter 4 : Section 5 : 5.3, Section 6 : 6.1 to 6.3

UNIT IV - Harmonic Functions and Power Series Expansions:

Schwarz theorem - The reflection principle - Weierstrass

theorem - Taylor Series - Laurent series .

Chapter 4: Sections 6.4 and 6.5

Chapter 5: Sections 1.1 to 1.3

UNIT V - Partial Fractions and Entire Functions: Partial fractions –

Infinite products - Canonical products - Gamma Function -

Jensen's formula

Chapter 5: Sections 2.1 to 2.4, Section 3.1

Recommended Text:

Lars V. Ahlfors, Complex Analysis, (3rd edition) McGraw Hill Co., New York, 1979

Books for Reference:

- 1. H.A. Priestly, *Introduction to Complex Analysis*, Clarendon Press, Oxford, 2003.
- 2. J.B.Conway, Functions of one complex variable, Springer International Edition, 2003
- 3. T.W Gamelin, *Complex Analysis*, Springer International Edition, 2004.

4. D.Sarason, Notes on complex function Theory, Hindustan Book Agency, 1998

Learning Outcomes

CO Number	CO Statement	Knowledge Level
CO1	analyze and evaluate local properties of analytical functions and definite integrals.	K4, K5
CO2	describe the concept of definite integral and harmonic functions.	K1
CO3	demonstrate the concept of the general form of Cauchy's theorem.	К2
CO4	develop Taylor and Laurent series .	K3
CO5	explain the infinite products, canonical products and jensen's formula .	К6

Title of the Course Core Paper - X TOPOLOGY								
Paper Number				X	X			
Category	Core	Year	II	Credits	Credits 4 Course			
		Semester III Code						
Pre-requisi	Pre-requisite Concepts in Real analysis							

Objective: To develop student's topological and proof writing skills which are essential in the study of advanced mathematics, understand the concepts of topological spaces, analyze and synthesize proofs, understanding the concepts of connectedness and compactness.

- **Unit I -** Topological spaces, Basis for a topology, Product topology on X x Y, Subspace topology, Closed sets and Limit points, Continuous functions. *Chapter 2 Sections 12, 13, 15, 16, 17, 18.*
- **Unit II -** Connected spaces, Connected subspaces of the real line, Components and Local connectedness, Compact spaces, Compact subspaces of the real line. *Chapter 3 Sections 23, 24, 25, 26, 27.*
- **Unit III -** Countability axioms, Separation axioms, Normal spaces, Urysohn Lemma, Urysohn metrization theorem, Tietze extension theorem. *Chapter 4 Sections 30, 31, 32, 33, 34, 35.*
- **Unit IV -** Product topology, Tychonoff theorem. *Chapter 2 - Sections 19. Chapter 5 - Section 37.*
- **Unit V -** Homotopy of paths, Fundamental group. *Chapter 9 Sections 51, 52.*

Recommended Text:

James R. Munkres "Topology" (Second edition) PHI, 2015.

Books for Reference:

- 1. T.W. Gamelin and R.E. Greene, *Introduction to Topology*, The Saunders Series, 1983.
- 2. G.F. Simmons, *Introduction to Topology and Modern Analysis*, Mcgraw-Hill
- 3. J. Dugundji, *Topology*, Prentice Hall of India.
- 4. J.L. Kelly, General Topology, Springer.
- 5. S. Willard, *General Topology*, Addison-Wesley.

Learning Outcomes

CO Number	CO Statement	Knowledge Level
CO1	define and illustrate the concept of topological spaces and the basic definitions of open sets, neighbourhood, interior, exterior, closure and their axioms for defining topological space.	K1, K2
CO2	understand continuity, compactness, connectedness, homeomorphism and topological properties.	K2
CO3	analyze and apply the topological concepts in Functional Analysis.	K3, K4
CO4	ability to determine that a given point in a topological space is either a limit point or not for a given subset of a topological space.	K5
CO5	develop qualitative tools to characterize connectedness, compactness, second countable, Hausdorff and develop tools to identify when two are equivalent(homeomorphic).	K6

Title of the	Course	Core Paper - XI : OPERATIONS RESEARCH					
Paper Num	lber XI						
Category	Core	Year	Year II Credits 4 Course				
		Semester III Code					
Pre-requisit	te	UG Level Operations Research					

Objective: To study the decision theory, network models, queueing theory and replacement and maintenance models.

UNIT-I: Decision Theory: Steps in Decision theory Approach – Types of Decision-Making Environments – Decision Making Under Uncertainty – Decision Making under Risk – Posterior Probabilities and Bayesian Analysis – Decision Tree Analysis – Decision Making with Utilities. *Chapter 10: Sec. 10.1 to 10.8*

UNIT-II: Network Models: Scope of Network Applications – Network Definition – Minimal spanning true Algorithm – Shortest Route problem – Maximum flow model – Minimum cost capacitated flow problem - Network representation – Linear Programming formulation – Capacitated Network simplex Algorithm.

Chapter 6: Sections 6.1 to 6.6 from **H.A.Taha**: Operations Research

UNIT-III: Deterministic Inventory Control Models: Meaning of Inventory Control – Functional Classification – Advantage of Carrying Inventory – Features of Inventory System – Inventory Model building - Deterministic Inventory Models with no shortage – Deterministic Inventory with Shortages

Probabilistic Inventory Control Models:

Single Period Probabilistic Models without Setup cost – Single Period Probabilities Model with Setup cost.

Chapter 13: Sec. 13.1 to 13.8 Chapter 14: Sec. 14.1 to 14.3

UNIT-IV: Queueing Theory: Essential Features of Queueing System – Operating Characteristic of Queueing System – Probabilistic Distribution in Queueing Systems – Classification of Queueing Models – Solution of Queueing Models – Probability Distribution of Arrivals and Departures – Erlangian Service times Distribution with k-Phases.

Chapter 15: Sec. 15.1 to 15.8

UNIT-V: Replacement and Maintenance Models: Failure Mechanism of items – Replacement of Items that deteriorate with Time – Replacement of items that fail completely – other Replacement Problems.

Chapter 16: Sec. 16.1 to 16.5

Recommended Texts:

- 1. (For Unit 2): H.A. Taha, Operations Research, 6th edition, Prentice Hall of India
- 2. (For all other Units): J.K.Sharma, Operations Research, MacMillan India, New Delhi, 2001.

Reference Books:

- 1. F.S. Hiller and J.Lieberman -, *Introduction to Operations Research* (7th Edition), Tata McGraw Hill Publishing Company, New Delhui, 2001.
- 2. Beightler. C, D.Phillips, B. Wilde *Foundations of Optimization* (2nd Edition) Prentice Hall Pvt Ltd., New York, 1979

- 3. Bazaraa, M.S; J.J.Jarvis, H.D.Sharall ,*Linear Programming and Network flow*, John Wiley and sons, New York 1990.
- 4. Gross, D and C.M.Harris, *Fundamentals of Queueing Theory*, (3rd Edition), Wiley and Sons, New York, 1998.

Learning Outcomes

CO Number	CO Statement	Knowledge Level
CO1	analyze and evaluate deterministic inventory control model.	K4, K5
CO2	describe the concept of Queueing theory.	K1
CO3	demonstrate the concept of network models.	K2
CO4	construct deterministic inventory control model and probabilistic inventory control model.	К3
CO5	explain the concept of replacement and maintenance models.	K6

Title of the Course		Core Paper – XII MECHANICS						
Paper N	lumber	XII						
Category	Core	Year	II	Credits	4	Course		
		Semester	Semester III Code					
Pre-requisite Calculus and Differential equations.								

Objective: To study mechanical systems under generalized coordinate, virtual work, energy and momentum, also to study the mechanics developed by Newton, Lagrange, Hamilton and Jacobi.

UNIT-I: Mechanical Systems: The Mechanical system- Generalised coordinates – Constraints - Virtual work - Energy and Momentum

Chapter 1: Sections 1.1 to 1.5

UNIT-II: Lagrange's Equations: Derivation of Lagrange's equations- Examples- Integrals of motion.

Chapter 2: Sections 2.1 to 2.3 (Omit Section 2.4)

UNIT-III: Hamilton's Equations: Hamilton's Principle - Hamilton's Equation - Other variational principles.

Chapter 4: Sections 4.1 to 4.3 (Omit section 4.4)

UNIT – IV : Hamilton-Jacobi Theory - Hamilton Principle function — Hamilton-Jacobi Equation - Separability

Chapter 5: Sections 5.1 to 5.3

UNIT-V: Canonical Transformation- Differential forms and generating functions – Special Transformations– Lagrange and Poisson brackets.

Chapter 6: Sections 6.1, 6.2 and 6.3 (omit sections 6.4, 6.5 and 6.6)

Recommended Text:

D. Greenwood, Classical Dynamics, Prentice Hall of India, New Delhi, 1985.

Books for Reference:

- 1. H. Goldstein, Classical Mechanics, (2nd Edition) Narosa Publishing House, New Delhi.
- 2. N.C.Rane and P.S.C.Joag, Classical Mechanics, Tata McGraw Hill, 1991.
- 3. J.L.Synge and B.A.Griffth, *Principles of Mechanics* (3rd Edition) McGraw Hill Book Co., New York, 1970.

CO Number	CO Statement	Knowledge Level
CO1	demonstrate the knowledge of core principles in mechanics.	K2
CO2	interpret and consider complex problems of classical dynamics in a systematic way.	K3, K5
CO3	apply the variation principle for real physical situations.	K4
CO4	explore different applications of these concepts in the mechanical and electromagnetic fields.	К6
CO5	describe and apply the concept of Angular momentum, Kinetic energy and Moment of inertia of a particle.	K1

Group – C (Elective Paper-III)

Title of the	course	ALGEBRAIC THEORY OF NUMBERS					
Paper Nun	nber						
Category	Elective	Year	II	Credits 3 Course			
		Semester	Ш			code	
Pre-requis	site	Algebra and Linear	Algeb	ra		I.	1
Course Ou	utline	UNIT – I : Algebraio	c back	ground : Rings	and F	ields –	
		Factorization of					
		Polynomials – Field	d exter	sions – Symme	tric po	olynomials –	
		Modules –					
		Free Abelian group	s.				
		Chapter 1 : Section	ıs – 1.′	I to 1.6			
		UNIT – II : Algebrai	ic num	bers – Conjugat	e and	d Discriminant –	
		Algebraic integers.					
		Chapter 2 : Section	ıs – 2.	1 – 2.3			
		UNIT – III : Integral	bases	- Norms and tr	aces	Rings of	
		integers					
		Chapter 2 : Section	ıs – 2.4	1 to 2.6			
		UNIT – IV : Quadra	tic fiel	ds – Cyclotomic	fields	3	
		Chapter 3 : Section	ıs – 3.′	I <i>-</i> 3.2			
		UNIT – V : Historica	al back	ground – trivial	facto	rization –	
		factorization into irr	educib	les			
		Chapter 4 : Section	ıs – 4.	1 – 4.3			
Recomme	nded	I.Stewart and D.Ta	II. Alge	braic number th	eory	and Fermat's La	ast
Text		theorem (3 rd edition	n) A.K	Peters Ltd,Natri	ck, Ma	ass. 2002	
Reference	Books	1. Z. I. Borevic	and I.	R.Safarevic, Nur	mber	theory, Academ	nic
		Press, NY, 1	966.				
		2. J.W.S.cassels and A.Frohlich, Algebraic, Number theory,					
		Academic Press, New York, 1967.					
		3. P. Ribenboim, Algebraic numbers, Wiley, New York, 1972.					
		4. P.Samuel, A	lgebra	ic Theory of Nur	mbers	s, Houghton Mif	flin
		company, B	oston,	1970			

Group -C (Elective Paper-III)

Title of the	course	NUME	BER THEORY	/ AND	CRYPTOGRAF	PHY			
Paper Nun	nber								
Category	Elective	Year		Ш	Credits	Course			
		Seme	ster	Ш			Code		
Pre-requis	ite	Eleme	entary numbe	r theor	y and calculus			Į.	
Course Ou	ıtline	UNIT	– I : Elementa	ary Nur	mber Theory : T	ime es	stimates for doin	g	
		arithm	etic – divisibi	lity and	the Euclidean	algorit	hm		
		Chapt	er 1 : Section	s 1 and	d 2				
		UNIT	- II : Elementa	ary Nui	mber Theory :C	ongru	ences – Some		
		applic	ations to facto	oring					
		Chapt	er 1 : Section	s 3 an	d 4				
		UNIT	– III: Finite F	ields a	ind Quadratic F	Residue	es: Finite Fields,		
		Quadratic residues and reciprocity							
		Chapter 2 : Sections 1 and 2							
		UNIT – IV : Cryptography : Some simple cryptosystems –							
		Enciphering matrices							
		Chapter 3 : Sections 1 and 2.							
		UNIT - V : Public Key : Public Key Cryptography - RSA							
		Chapt	er 4 : Section	s 1 and	d 2				
Recomme	nded	Neal Koblit, A course in Number Theory and Cryptography,							
Text		Springer – Verlag, New York, 1987							
Reference	Books	I. Niven and H.S.uckermann, An Introduction to Theory of							
		Numbers (Edition 3), Wiley Eastern Ltd, New Delhi 1976							
		2. D.M.Burton, Elementary Number Theory, Brown							
		Publishers, Iowa, 1989							
		3. K.Ireland and M.Rosen, A classic Introduction to Modern							
		Number Theory, Springer – Verlag, 1972							
		4.	N.Koblit, Alg	ebraic	Aspects of Cry	ptogra	phy, Springer-		
			Verlag, 1998	3					

Group –C (Elective Paper-III)

Title of the	COURSE	STOCHASTIC PROCESSES						
Paper Nun		010011101110111002020						
<u> </u>		Year II Credits 3 Course						
Category	LICCUVC	Semester III Code						
Pre-requis	ito.	Probability Theory						
Course Ou		UNIT – I : Markov Chains : Classification of general stochastic						
Course Oc	illii i C	processes – markov chain – Examples – Transition probability						
		matrix – Classification of states - Recurrence						
		Chapter 1 : Section 3 only and Chapter 2 : sections 1 to 5.						
		UNIT - II : Limit theorems of Markov chains : Discrete renewal						
		equation and its proof – Absorption probabilities – criteria for						
		recurrence – Queuing models						
		Chapter 3 : Sections 1 to 7						
		UNIT – III : Continuous time Markov Chains : Poisson process –						
		Pure Birth process – Birth and Death process - Birth and Death						
		process with absorbing states						
		Chapter 1 : Section 2 (Poisson process)						
		Chapter 4: Sections 1, 2 and 4to 7 (omit sections 3 and 8)						
		UNIT – IV : Renewal processes : Definition and related concepts –						
		Some special renewal processes						
		Chapter 5: sections 1 - 3						
		UNIT - V : Brownian Motion : Definition – Joint probabilities for						
		Brownian Motion – Continuity of paths and the maximum variables						
		 Variations and extensions 						
		Chapter 1 : Section 2 (Brownian Motion)						
		Chapter 6 : sections 1 to 4 and 7A only						
Recomme	nded	S.Karlin and H.M. taylor, A first course in stochastic processes (
Text		2 nd edition) Academic Press, New York, 1975						
Reference	Books	E. Cinler, Introduction to stochastic processes, Prentice Hall						
		Inc, New Delhi, 1975						
		2. D.R.Cox and H.D.Miller, Theory of stochastic processes (3 rd						
		Edition) Chapman and hall, London, 1983						
		3. D.Kannan, An introduction to stochastic processes, North-						
		Holland, New York, 1979						
		4. S.M. Ross, Stochastic processes, John Wiley and Sons,						
		New York, 1983						
		5. H.W. Taylor nd S.Karlin, An introduction to stochastic						
		modeling (3 rd Edition), Academic Press, New York, 1998						
L								

Extra Disciplinary-II

Title of the	course	JAVA PROGRAMM	ING				
Paper Nur	nber						
Category	Elective	Year	Credits	3	Course		
		Semester			Code		
Pre-requis	ite	Knowledge in Progra	amming in C / C++	L	1		
Course Ou	utline	UNIT – I : Overview	of Java Language	e: Java ⁻	Tokens – Java		
		Statements.					
		Chapter 3 : Section	3.1 to 3.12				
		UNIT – II : Constant	s – Variables – Da	ata Type	es		
		Chapter 4 : Section	4.1 to 4.12				
		UNIT – III : Operators - Expressions					
		Chapter 5 : Section 5.1 to 5.16					
		UNIT – IV : Decision making and Branching					
		Chapter 6 : Section 6.1 – 6.9					
		UNIT – V : Classes – Objects – Methods – Arrays – Strings					
		Chapter 8 : Section 8.1 to 8.19					
		Chapter 9 : Section 9.1 to 9.5					
Recomme	nded	E. Balaguruswamy,	Programming with	ı Java –	A primer, Tata		
Text		McGraw Hill Publish	ing Company Lim	ited, Ne	w Delhi, 1998		
Reference	Books	Mitchell Waite	e and Robert Lafo	re, Data	Structure and		
		Algorithms in Java, Tech media (Indian Edition) New Delhi,					
	1999						
		2. Adam Drozde	ek, Data Structures	s and Al	gorithms in Java (
		Brown /Cole)	Vikas Publishing	House,	New Delhi 2001.		

Extra Disciplinary-II

Title of the	course	DATA STRUCTURES AND ALGORITHMS						
Paper Nun	nber							
Category	Elective	Year			Credits	3	Course	
		Seme	ster				Code	
Pre-requis	ite			l				
Course Ou	ıtline	UNIT	– I : Algorithms	s – :	Structures Progr	ams -	- Analysis of	
		Algori	thms					
		Chapt	er 1 : Sections	1.1	to 1.4			
		UNIT	– II: Stacks an	d Q	ueues – Trees -	- Heap	s and Heapsort	
		Chapt	er 2 : Sections	2.1	to 2.3			
		UNIT	– III : Sets and	dis	joint set Union -	- graph	ns – Hashing	
		Chapt	er 2 : Sections	2.4	to 2.6			
		UNIT – IV : The General – Binary Search – Finding the Maximum						
		and Minimum						
		Chapter 3 : Sections 3.1 to 3.3						
		UNIT – V: Merge sort – Quick sort – Selection sort						
		Chapter 3: Section 3.4 to 3.6						
Recomme	nded	E. Horowitz and S. Shani. Fundamentals of Computer Algorithm,						
Text		Galgotia publications, New Delhi, 1984.						
Reference	Books	D.E. Knuth, The Art of Computer Programming Sorting and						
		Searching Vol. 3. Addism tresher mass, 1973						
		2. A. NiJenhuis and H.S. Wilf, Combinatorial Algorithms,						
		Academic Press. New York, 1975.						
		3. A.V. Aho, J.E. Hoperoft, J.D. Ullman, The Design and						
		Analysis of Computer Algorithms. Addision – Wesley						
			Reading , Ma	SS,	1974.			

SEMESTER IV

Title of the Course Core Paper XIII : COMPLEX ANALYSIS- II							
Paper Num	ber	XIII					
Category	Core	Year	II	Credits	4	Course	
		Semester	IV			Code	
Pre-requisite Complex Analysis-I and Real Analysis							

Objective: To study the Riemann Zeta Function, Riemann mapping theorem, Weierstrass theory and Analytic Continuation.

UNIT-I: Riemann Zeta Function and Normal Famalies:

Product development – Extension of $\zeta(s)$ to the whole plane – The zeros of zeta function – Equicontinuity – Normality and compactness – Arzela's theorem – Families of analytic functions – The Classical Definition

Chapter 5: Sections 4.1 to 4.4, Sections 5.1 to 5.5

UNIT-II: Riemann mapping Theorem: Statement and Proof – Boundary Behaviour – Use of the Reflection Principle.

Conformal mappings of polygons : Behaviour at an angle - Schwarz-Christoffel formula Mapping of a rectangle.

Harmonic Functions : Functions with mean value property – Harnack's principle.

Chapter 6: Sections 1.1 to 1.3 (Omit Section 1.4) Sections 2.1 to 2.3 (Omit section 2.4), Section 3.1 and 3.2

UNIT-III: Elliptic functions: Simply periodic functions – Doubly periodic functions

Chapter 7: Sections 1.1 to 1.3, Sections 2.1 to 2.4

UNIT-IV: Weierstrass Theory: The Weierstrass \wp -function – The functions $\zeta(s)$ and $\sigma(s)$ – The differential equation – The modular equation $\lambda(\tau)$ – The Conformal mapping by $\lambda(\tau)$.

Chapter 7: Sections 3.1 to 3.5

UNIT-V: Analytic Continuation: The Weiesrtrass Theory – Germs and Sheaves – Sections and Riemann surfaces – Analytic continuation along Arcs – Homotopic curves – The Monodromy Theorem – Branch points.

Chapter 8: Sections 1.1 to 1.7

Recommended Text:

Lars V. Ahlfors, *Complex Analysis*, (3rd Edition) McGraw Hill Book Company, New York, 1979.

Books for Reference:

- 1.H.A. Priestly, *Introduction to Complex Analysis*, Clarendon Press, Oxford, 2003.
- 2.J.B.Conway, Functions of one complex variable, Springer International Edition, 2003

- 3.T.W Gamelin, *Complex Analysis*, Springer International Edition, 2004.4.D.Sarason, *Notes on Complex function Theory*, Hindustan Book Agency, 1998

CO Number	CO Statement	Knowledge Level
CO1	analyze and evaluate Riemann Zeta Function and Normal Famalies.	K4, K5
CO2	describe the concept of Riemann mapping Theorem .	K1
CO3	demonstrate the concept of Simply periodic functions and Doubly periodic functions.	K2
CO4	explain the families of analytic functions.	K3
CO5	develop the concept analytic continuation.	K6

Title of the	Course	Core P	aper – XIV	DIFFE	RENTIAL	GEOMET!	RY	
Paper Nu	mber	XIV						
Category	Core	Year	II	Credits	4	Course		
		Semester	IV	-		Code		
Pre-requisite		Linear Algeb	ra and Calc	culus				

Objective : This course introduce space curves and their intrinsic properties of a surface and geodesics. Further the non-intrinsic properties of surfaces are explored.

UNIT-I: Space curves: Definition of a space curve — Arc length — tangent — normal and binormal — curvature and torsion — contact between curves and surfaces- tangent surface-involutes and evolutes- Intrinsic equations — Fundamental Existence Theorem for space curves-Helices.

Chapter I: Sections 1 to 9.

UNIT-II: Intrinsic properties of a surface: Definition of a surface curves on a surface — Surface of revolution — Helicoids — Metric- Direction coefficients — families of curves-Isometric correspondence- Intrinsic properties.

Chapter II: Sections 1 to 9.

UNIT-III: Geodesics: Geodesics — Canonical geodesic equations — Normal property of geodesics- Existence Theorems — Geodesic parallels — Geodesics curvature- Gauss- Bonnet Theorem — Gaussian curvature surface of constant curvature – Conformal mapping. *Chapter II: Sections 10 to 19.*

UNIT-IV: Non-intrinsic properties of a surface: The second fundamental form- Principal curvature — Lines of curvature — Developable - Developable associated with space curves and with curves on surfaces - Minimal surfaces — Ruled surfaces. *Chapter III: Sections 1 to 8.*

UNIT-V: Differential Geometry of Surfaces:

Compact surfaces whose points are umblics- Hilbert's lemma — Compact surface of constant curvature Complete surfaces and their characterization — Hilbert's Theorem — Conjugate points on geodesics.

Chapter IV: Sections 1 to 8

Recommended Text:

T.J. Willmore, An Introduction to Differential Geometry, Oxford University Press (26th impression) New Delhi 2002. (Indian Print)

Books for Reference:

- 1. Struik, D. T. Lectures on Classical Differential Geometry, Addison Wesley, Mass. 1950.
- 2. A.Pressley, Elementary Differential Geometry, Springer International Edition, 2004.
- 3. Wilhelm Klingenberg, A course in Differential Geometry, Graduate Texts in Mathematics, Springer-Verlag 1978.
- 4. J.A. Thorpe, Elementary Topics in Differential Geometry, Springer International Edition, 2004

CO Number	CO Statement	Knowledge Level
CO1	explain space curves, Curves between surfaces, metrics on a surface, fundamental form of a surface and Geodesics.	К2
CO2	evaluate these concepts with related examples.	K5
CO3	compose problems on geodesics.	К6
CO4	recognize applicability of developable.	K1
CO5	construct and analyze the problems on curvature and minimal surfaces.	K3, K4

Title of the	Course	C	ore Pape	r – XV FUNC	CTIONA	L ANALYSIS		
Paper Nu	mber		XV					
Category	Core	Year	I	Credits	4	Course		
		Semester	II			Code		
Pre-requisite		Linear Alge	bra and C	alculus	•	<u>.</u>		

Objective: To provide students with a strong foundation in functional analysis, focusing on spaces, operators and fundamental theorems. To develop student's skills and confidence in mathematical analysis and proof techniques.

Unit I

Banach Spaces: The definition and some examples – Continuous linear transformations – The Hahn-Banach theorem – The natural imbedding of N in N^{**} - The open mapping theorem – The conjugate of an Operator.

Chapter 9: Sections 46-51

Unit II

Hilbert Spaces: The definition and some simple properties – Orthogonal complements – Orthonormal sets – The conjugate space H^* - The adjoint of an operator – self-adjoint operators – Normal and unitary operators – Projections.

Chapter 10: Sections 52-59

Unit III

Finite-Dimensional Spectral Theory: Matrices – Determinants and the spectrum of an operator – The spectral theorem.

Chapter 11: Sections 60-62

Unit IV

General Preliminaries on Banach Algebras: The definition and some examples – Regular and singular elements – Topological divisors of zero – The spectrum – The formula for the spectral radius – The radical and semi-simplicity.

Chapter 12: Sections 64-69

Unit V

The Structure of Commutative Banach Algebras: The Gelfand mapping – Application of the formula $r(x) = \lim_{n \to \infty} \|x^n\|^{1/n}$ – Involutions in Banach algebras - The Gelfand-Neumark theorem.

Chapter 13: Sections 70-73

Recommended Text:

G. F. Simmons, Introduction to Topology and Modern Analysis, McGraw Hill Education(India) Private Limited, New Delhi, 1963.

Books for Reference:

- 1. W. Rudin, Functional Analysis, McGraw Hill Education (India) Private Limited, New Delhi, 1973.
- 2. B.V. Limaye, Functional Analysis, New Age International, 1996.

- 3. C. Goffman and G. Pedrick, First course in Functional Analysis, Prentice Hall of India, New Delhi, 1987.
- 4. E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, New York, 1978.
- 5. M. Thamban Nair, Functional Analysis, A First course, Prentice Hall of India, New Delhi, 2002.

CO Number	CO Statement	Knowledge Level
CO1	understand the Banach spaces and Transformations on Banach Spaces.	K2
CO2	prove Hahn Banach theorem and open mapping theorem.	K5
CO3	describe operators and fundamental theorems.	K1
CO4	validate orthogonal and orthonormal sets.	K6
CO5	analyze and establish the regular and singular elements.	K3, K4

Group D: Elective IV (Semester IV)

Title of the Course		FLUID DYNAMICS							
Paper N	Number								
Category	Elective-	Year	II	Credits	4	Course			
	IV	Semester	IV			Code			
Pre-requisit	te	Basic Diffe	rential Equat	tions, Vector	Calculus an	d Complex A	nalysis		
Course Out	line	UNIT-I : Kinematics of Fluids in motion. Real fluids and Ideal fluids-							
		Velocity of a fluid at a point, Stream lines , path lines , steady and unsteady							
		flows- Velocity potential - The vorticity vector- Local and particle rates of changes - Equations of continuity - Worked examples - Acceleration of a fluid							
			quations of co at a rigid bou		rked exampl	es - Accelerat	tion of a fluid		
			Sec 2.1 to 2.1						
					fluid : Press	sure at a point	t in a fluid at		
							indary of two		
							on of the case		
		of steady mo	otion under co	nservative bo	dy forces.				
		Chapter 3. Sec 3.1 to 3.7							
		UNIT-III: Some three dimensional flows. Introduction- Sources, sinks and							
		doublets - Images in a rigid infinite plane - Axis symmetric flows - Stokes							
		stream function Chapter 4 Sec 4 1 4 2 4 3 4 5							
		Chapter 4 Sec 4.1, 4.2, 4.3, 4.5. UNIT-IV: Some two dimensional flows: Meaning of two dimensional flow							
		- Use of Cylindrical polar coordinates - The stream function - The complex							
		potential for two dimensional, irrotational incompressible flow - Complex							
		velocity potentials for standard two dimensional flows - Some worked							
		examples - Two dimensional Image systems - The Milne Thompson circle							
		Theorem.							
		Chapter 5. Sec 5.1 to 5.8							
		UNIT-V Viscous flows: Stress components in a real fluid Relations between							
		Cartesian components of stress- Translational motion of fluid elements - The rate of strain quadric and principle stresses - Some further properties of the							
		rate of strain quadric and principle stresses - Some further properties of the rate of strain quadric - Stress analysis in fluid motion - Relation between stress							
		and rate of strain- The coefficient of viscosity and Laminar flow - The Navier							
– Stokes equations of motion of a									
		Chapter 8.	Sec 8.1 to 8.9	•					
Recommend	ded Text	F. Chorlton	n, Text Book o	f Fluid Dynan	nics ,CBS Pu	blications. D	elhi ,1985.		
Reference	ce Books					id Mechanics,			
						lutions, Spring nics of Fluids,			
		Taylor and	l Francis, New	York, 2005					
		4. P.Orlandi, Fluid Flow Phenomena, Kluwer, New Yor, 2002.							
		5. T.Petrila, Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics, Springer, berlin, 2004.							

Title of the Course		MATHEMATICAL STATISTICS								
Paper I	Number									
Category	Elective-	Year	II	Credits	4	Course				
	IV	Semester	IV			Code				
Pre-requisi	Pre-requisite		Basic Probability Theory							
Course Ou	tline	UNIT-I:S	ample Mom	ents and the	ir Functions	: Notion of a	l			
		_	sample and a statistic – Distribution functions of \overline{X} , S^2 and –							
		(X , S^2) - χ^2 distribution – Student t-distribution – Fisher's Z-distribution – Snedecor's F- distribution – Distribution of sample mean								
			rmal populat		uon – Disu	ibution of sa	impie mean			
			Sections 9.1							
				Test : Conce	nt of a statist	ical test – Pa	rametric			
			_	nd large samp	-					
				ests of Kolmo						
				coxon-Mann						
		by continger			•	1				
		Chapter 10 : Sections 10.11								
		Chapter 11: 12.1 to 12.7.								
		UNIT-III: Estimation: Preliminary notion – Consistency estimation – Unbiased estimates – Sufficiency – Efficiency – Asymptotically most efficient estimates – methods of finding estimates – confidence Interval. Chapter 13: Sections 13.1 to 13.8 (Omit Section 13.9)								
				Variance : C			d two-way			
				es Testing: P						
		Powerful tes	st – Uniforml	y most power	rful test – un	biased test.				
		Chapter 15: Sections 15.1 and 15.2 (Omit Section 15.3)								
				6.1 to 16.5 (C						
		UNIT-V: Sequential Analysis: SPRT – Auxiliary Theorem –								
		Wald's fundamental identity – OC function and SPRT – E(n) and								
		Determination of A and B – Testing a hypothesis concerning p on 0- 1 distribution and m in Normal distribution.								
		Chapter 17: Sections 17.1 to 17.9 (Omit Section 17.10)								
Recommen	ded Text						n Wiley and			
	1021	M. Fisz, Probability Theory and Mathematical Statistics, John Wissons, New Your, 1963.								
Reference	ce Books			N.Mishra , A	Aodern Math	ematical S	Statistics,			
				New York, 1			ŕ			
		2. V.K.Rohatgi An Introduction to Probability Theory and Mathematical								
		Statistics, Wiley Eastern New Delhi, 1988(3 rd Edn)								
		3. G.G.Roussas, A First Course in Mathematical Statistics,								
		Addison Wesley Publishing Company, 1973								
		4. B.L.Van der Waerden, <i>Mathematical Statistics</i> , G.Allen &								
Unwin Ltd., London, 1968.										

Title of the Course		ALGEBRAIC TOPOLOGY							
Paper N	lumber								
Category	Elective-	Year	II	Credits	4	Course			
	IV	Semester	IV			Code			
Pre-requisit	te	Algebra, To	pology	•			•		
Course Out	line	UNIT-I:	Homotopy of	paths - Fun	damental Gr	oup – Cove	ring space -		
		The Fundan	nental Group	of the circle	 Retractions 	and Fixed p	ooints		
			~						
		Chapter 9: Sections 51 – 55. UNIT-II: The Fundamental Theorem of Algebra – Borsuk–Ulam							
			Deformation - Fundamer				Fundamental		
		Group or S	- Pundamer	itai Gioups o	1 Some Surra	Les.			
		Chapter 9 :	Sections 56	- 60					
					Groups – Fr	ree products	of Groups –		
		UNIT-III: Direct sums of Abelian Groups – Free products of Groups – Free Groups – The Seifert–van Kampen Theorem – The Fundamental							
		Group of a wedge of circles.							
		Chapter 11: Sections 67 -71.							
		UNIT-IV: Fundamental groups of surfaces – Homology of surfaces –							
		cutting and pasting – The classification theorem – constructing compact surfaces.							
		Chapter 12 : Sections 74 - 78							
			Equivalence of		aces – The I	Iniversal cov	vering space		
		- covering transformations - Existence of covering spaces							
			: Sections 79			. 1			
Recommend	ded Text	J.R.Munkres, Toplogy, Pearson Education Asia, Second Edition 2002.							
			goston, Alge	ebraic topolog	gy – A First (Course, Marc	cel Dekker,		
		1962.							
		-	Deo, Algebra	ic Topology	, Hindustan I	Book Agency	y, New		
	Delhi, 2003.								
		 M.Greenberg and Harper, Algebraic Topology – A First course, Benjamin/Cummings, 1981. C.F. Maunder, Algebraic topology, Van Nostrand, New York, 197 							
	5. A.Hatcher , Algebraic Topology, Cambridge University Press,								
			Edition 2002.		,	:	,		
		6. W.S. M	lassey, Algeb	rai Topology	: An Introdu	action, Sprin	ger 1990		

Group E: Elective V (Semester IV)

Title of the Course		TENSOR ANALYSIS AND RELATIVITY						
Paper N	Number							
Category	Elective -	Year	II	Credits	4	Course		
	V	Semester	IV			Code		
Pre-requisi		Vector Calculus and Mechanics						
Course Out	tline	UNIT-I: Tensor Algebra: Systems of Different orders – Summation Convention – Kronecker Symbols - Transformation of coordinates in S _n - Invariants – Covariant and Contravariant vectors - Tensors of Second Order – Mixed Tensors – Zero Tensor – Tensor Field – Algebra of Tensors – Equality of Tensors – Symmetric and Skew-symmetric tensors - Outer multiplication, Contraction and Inner Multiplication – Quotient Law of Tensors – Reciprocal Tensor – Relative Tensor – Cross Product of Vectors. Chapter I: I.1 – I.3,I.7 and I.8 and Chapter II: II.1 – II.19 UNIT-II: Tensor Calculus: Riemannian Space – Christoffel Symbols						
		and their properties. Chapter III: III.1 and III.2 UNIT-III: Tensor Calculus(contd): Covariant Differentiation of Tensors — Riemann—Christoffel Curvature Tensor — Intrinsic Differentiation Chapter III:III.3 — III.5 UNIT-IV: Special Theory of Relativity: Galilean Transformations — Maxwell's equations — The ether Theory — The Principle of Relativity. Relativistic Kinematics: Lorentz Transformation equations — Events and						
		Contraction line - Exam Doppler effe Chapter 7: UNIT-V: F energy four Example - i Hamiltonian Accelerated Rocket with	ultaneity – Example – Einstein Train – Time dilation – Longitudinal straction - Invariant Interval - Proper time and Proper distance - World – Example – twin paradox – addition of velocities – Relativistic opler effect. apter 7: Sections 7.1 and 7.2 IT-V: Relativistic Dynamics: Momentum – Energy – Momentum – regy four vector – Force - Conservation of Energy – Mass and energy – mple – inelastic collision – Principle of equivalence – Lagrangian and niltonian formulations. celerated Systems: Rocket with constant acceleration – example – elect with constant thrust. apter 7: Sections 7.3 and 7.4					
Recommen For Units I	,II and III	U.C. De, Absos Ali Shaikh and Joydeep Sengupta, Tensor Calculus, Narosa Publishing House, New Delhi, 2004.						
For Units I		1985.				of India, New	·	
Reference	ce Books	 J.L.Synge and A.Schild, Tensor Calculus, Toronto, 1949. A.S.Eddington. The Mathematical Theory of Relativitity, Cambridge University Press, 1930. P.G.Bergman, An Introduction to Theory of Relativity, Newyor, 1942. C.E.Weatherburn, Riemannian Geometry and the Tensor Calculus, Cambridge, 1938. 						

Title of the Course		MATHEMATICAL PHYSICS						
Paper N	Paper Number							
Category	Category Elective -		II	Credits	4	Course		
	V	Semester	IV			Code		
Pre-requisi	te			•	'			
Course Outline		UNIT-I: Integral Equations, Sturm–Liouville Theorem and Green's Functions Chapter 4: Sections 4.1 – 4.4 only. UNIT-II: Methods of Non linear Dynamics – I: Phase Portraits. Chapter 6: Sections 6.1 – 6.4 only. UNIT-III: Methods of Non linear Dynamics – II: Stability and Bifurcation. Chapter 7: Sections 7.1 -7.4 only. UNIT-IV: Non linear Differential Equations and their solutions.						
Recommend	ded Text	UNIT-V: Non linear Integral Equations and their solutions. Chapter 9: Sections 9.1 – 9.7 only. R.S.Kaushal and D.Parashar, Advanced Methods of Mathematical Physics						
Reference	1. Arfken,G (1966) Mathematical Methods for Physicists, A.P.NY. 2. Butkor,E. (1968) Mathematical Physics, Addison –Wesley. 3. Strogatz,S.H.(1994) Non linear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Addison – Wesley 4. Tabor, M (1989) Chaos and integrability in Non linear systems: An Introduction, John Wiley & Sons,NY. 5. Lakshmanan, M (1988). Solitons: Introduction and Applications, Springer Verlag, Berlin 6. Debnath, Lokenath (1997). Introduction to Non linear PDE for Scientists and Engineers, Birkhauser, Boston							

Title of the Course		CALCULUS OF VARIATIONS AND INTEGRAL EQUATIONS								
Paper N	lumber									
Category	Elective-V	Year	II	Credits	4	Course				
		Semester	IV			Code				
Pre-requisite	;	UG level I	Differential	equations						
Course Outli	ne	UNIT-I:	The Metho	od of Variati	ons in Prol	olems with Fixe	d Boundaries			
		Chapter 6 : Sections 1 to 7 (Elsgolts)								
		UNIT-II: Variational Problems with Moving Boundaries and certain other								
		problems and Sufficient conditions for an Extremum								
		Chapter 7 : Sections 1 to 4 (Elsgolts)								
		Chapter 8 : Sections 1to 3(Elsgolts)								
		UNIT-III	: Variation	nal Problems	Involving	a conditional E	xtremum			
				s 1 to 3. (Els						
		UNIT-IV	: Integral I	Equations wi	th Separab	le Kernels and	Method of			
		successive								
		Chapter 1	: Sections	s 1.1 to 1.7 (Kanwal)					
				s 2.1 to 2.5 (
		Chapter 3 : Sections 3.1 to 3.5 (Kanwal)								
		UNIT-V: Classical Fredholm Theory, Symmetric Kernels and Singular								
		Integral Equations								
		Chapter 4 : Sections 4.1 to 4.5 (Kanwal) Chapter 7 : Sections 7.1 to 7.6 (Kanwal)								
		Chapter 8 : Sections 8.1 to 8.5 (Kanwal) For Units I,II and III : L. Elsgolts , Differential Equations and the								
Recommende	ed Text	For Units	I,II and I	III : L. Elsgo	lts , <i>Differ</i>	ential Equation	s and the			
		Calculus of variations, Mir Publishers, Moscow, 1973 (2 nd Edition)								
		Culculus of variations, will I dollshers, woscow, 1973 (2 Edition)								
		For Units IV and V: Ram P.Kanwal, Linear Integral Equations, Academic								
		Press, New York, 1971.								
Reference	e Books	I.M.Gelfand and S.V.Fomin, <i>Calculus of Variations</i> , Prentice-Hall Inc.								
			Jersey, 196		, caremus	of variations, 1	Tomaco Tran Inc.			
		2. A.S.Gupta, <i>Calculus of Variations with Applications</i> , Prentice-Hall of								
		India, New Delhi, 1997.								
		3. M.Krasnov, A.Kiselev and G.Makarenko, <i>Problems and Exercises in</i>								
		Integral Equations, Mir Publishers, Moscow, 1979.								
		4. S.G.Mikhlin, <i>Linear Integral Equations</i> , Hindustan Publishing Corp.								
		Delhi,1960.								
		5. L.A.Pars, An Introduction to the Calculus of Variations, Heinemann,								
		London, 1965.								
		6. R.Weinstock, Calculus of Variations with Applications to								
		Physics and Engineering, McGraw-Hill Book Company								
		Inc. I	New York,	1952.						